Based on Latest NCERT NEET Syllabus & NTA Guidelines

Topic Wise Chapter

Home Assignment

CHEMISTRY

CLASS XI & XII

oring Grid

HOME ASSIGNMENTS CHAPTERWISE CC26- CHEMISTRY						
Total Questions	45	Total Marks	180			
Attempted		Correct				
Incorrect		Net Score				
Cut-off Score	45	Qualifying Score	60			
Success Gap = Net Score — Qualifying Score						
Net Score = (Correct × 4) – (Incorrect × 1)						

Contents

- 1. Some Basic Concepts of Chemistry
- 2. Structure of Atom
- 3. Classification of Elements and Periodicity in Properties
- 4. Chemical Bonding and Molecular Structure
- 5. Thermodynamics
- 6. Equilibrium
- 7. Redox Reactions
- 8. Organic Chemistry Some Basic Principles and Techniques
- 9. Hydrocarbons

Contents

Class

- 1. Solutions
- 2. Electrochemistry
- 3. Chemical Kinetics.
- 4. The d-and f-Block Elements.
- 5. Coordination Compounds
- 6. Haloalkanes and Haloarenes
- 7. Alcohols, Phenols and Ethers
- 8. Aldehydes, Ketones and Carboxylic Acids
- 9. Amines
- 10. Biomolecules
- "B. Principles Related to Practical Chemistry

Chapter-wise Sheets

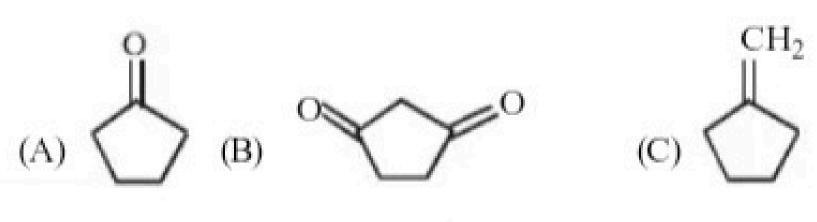
Date:

Start Time:

End Time:

CHEMISTRY (CC26)

SYLLABUS: Aldehydes, Ketones and Carboxylic Acids


Max. Marks: 180 Marking Scheme: + 4 for correct & (-1) for incorrect

Time: 60 min.

INSTRUCTIONS: This Daily Practice Problem Sheet contains 45 MCQ's. For each question only one option is correct. Darken the correct circle/ bubble in the Response Grid provided on each page.

- Which of the following compounds is most reactive towards 1. nucleophilic addition reactions?
 - (a) $CH_3 C H$ (b) $CH_3 C CH_3$

 - (c) (d) (D)—C-CH₃
- 2. Arrange the following in order of decreasing acidity

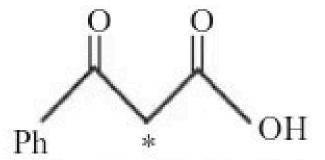
- (a) B>A>C
- (b) C>B>A
- (c) A>C>B
- (d) A>B>C

A and B in the following reactions are

- (a) A = RR'C < CN $A = LiAlH_4$
- (b) A = RR'C < OH $COOH , <math>B = NH_3$
- (c) $A = RR'C \stackrel{CN}{\searrow} , B = H_3O^{\oplus}$
- (d) $A = RR'CH_2CN, B = NaOH$
- Acetaldehyde reacts with
 - (a) Electrophiles only
 - (b) Nucleophilesonly
 - (c) Free radicals only
 - Both electrophiles and nucleophiles

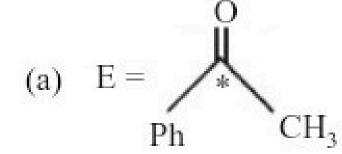
RESPONSE GRID

- (a)(b)(c)



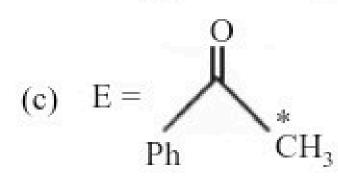
c-102

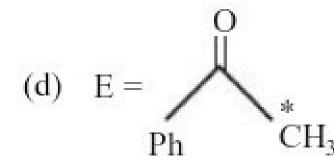
CC26


- $C_6H_5CH=CHCHO \xrightarrow{X} C_6H_5CH=CHCH_2OH$ In the above sequence X can be:

 - (a) H₂/Ni
- $NaBH_{4}$
- (c) K₂Cr₂O₇/H⁺
- (d) Both (a) and (b)
- Which one of the following can be oxidised to the corresponding carbonyl compound?
 - (a) 2-hydroxy-propane
 - Ortho-nitro-phenol
 - Phenol (c)
 - 2-methyl-2hydroxy-propane
- In the following reaction sequence, the correct structures of E, F and G are

 $\xrightarrow{\text{Heat}} [E] \xrightarrow{I_2} [F] + [G]$


[* implies ¹³C labelled carbon)

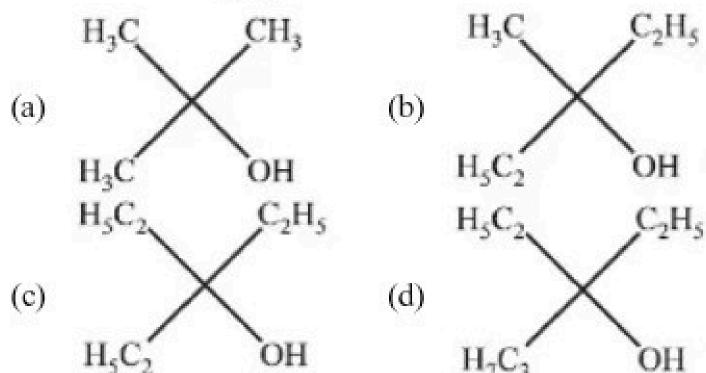

$$F = \bigvee_{\text{Ph}}^{\bullet} \bigvee_{\text{O Na}}^{\bullet} G = \text{CHI}_3$$

(b)
$$E = \bigvee_{Ph}^{O} {*}_{CH_3}$$

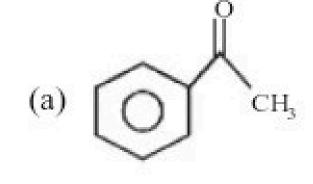
$$F = \bigvee_{\substack{\bullet \\ O \text{ Na}}}^{\bullet} \bigcap_{\substack{\bullet \\ O \text{ Na}}}^{+} G = CHI_3$$

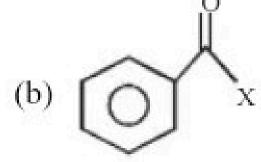
$$F = \bigvee_{\substack{G \\ O \text{ Na}}}^{G + G} = \mathop{CHI}_{3}^{*}$$

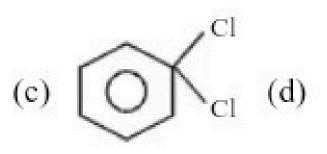
$$F = \bigvee_{\substack{\text{O} \\ \text{O} \text{ Na } G = \text{CH}_3I}}^{\text{O}}$$

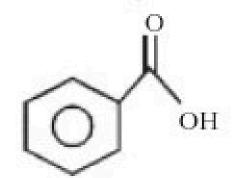

8. Ketones

[R — C —
$$R_1$$
, where $R = R_1 = alkyl$ groups]


can be obtained in one step by


- oxidation of primary alcohols
- hydrolysis of esters
- oxidation of tertiary alcohols
- reaction of acid halides with alcohols
- The compound that neither forms semicarbazone nor oxime is
 - HCHO (a)
- CH₃COCH₂Cl
- CH₃CHO
- CH3CONHCH3 (d)


CH₃MgBr → P. The product P will be Ethyl ester excess

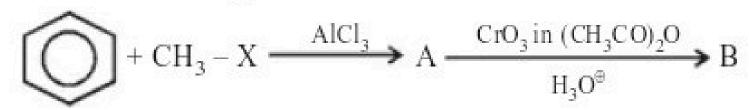


- Which of the following compounds when heated with CO at 150°C and 500 atm pressure in presence of BF₃ forms ethyl propionate?
 - (a) C₂H₅OH
- (b) CH₃OCH₃
- (c) $C_2H_5OC_2H_5$
- (d) CH₃OC₂H₅
- Benzaldehyde is obtained from Rosenmund's reduction of

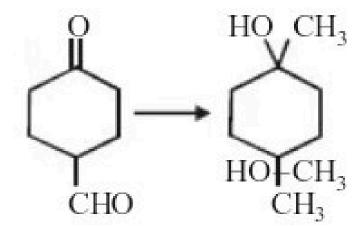
- Acetone oxime is obtained by reacting acetone with
 - (a) NH₃
- (b) NH₂OH (c) NH₂Na (d) NH₂.NH₂
- $\xrightarrow{OH^-}$ $C_6H_5CH_2OH + C_6H_5COO^-$

Which of the following statements are correct regarding the above reduction of benzaldehyde to benzyl alcohol?

- One hydrogen is coming from H₂O as H⁺ and another from C₆H₅CHO as H⁻
- One hydrogen is coming from H₂O as H⁻ and another from C₆H₅CHO as H⁺
- (iii) One hydrogen from H₂O and another from C₆H₅CHO, both in the form of H
- (iv) The reduction is an example of disproportionation reaction
- (i), (ii) and (iii)
- (b) (i) and (iv)
- (ii), (iii) and (iv)
- (d) (iii) and (iv)
- A carboxylic acid can best be converted into acid chloride by using
 - PCl_5
- SOCL
- HCl
- (d) ClCOCOC1
- Among the given compounds, the most susceptible to nucleophilic attack at the carbonyl group is
 - MeCOCl
- MeCHO
- MeCOOMe
- MeCOOCOMe


RESPONSE GRID

- 14. (a)(b)(c)


CC26

c-103

17. Find out B in the given reactions

- acetophenone
- benzaldehyde
- cyclohexyl carbaldehyde
- (d) benzoicacid
- 18. Pinacolone is
 - (a) 2,3-Dimethyl-2,3-butanediol
 - (b) 3,3-Dimethyl-2-butanone
 - 1-Phenyl-2-propanone
 - (d) 1, 1-Diphenyl-1, 2-ethandiol
- 19. The correct sequence of reagents for the following conversion will be:

- [Ag(NH₃)₂]⁺OH⁻, H⁺/CH₃OH, CH₃MgBr
- $CH_3MgBr, H^+/CH_3OH, [Ag(NH_3)_2]^+OH^-$
- (c) CH_3MgBr , $[Ag(NH_3)_2]^+OH^-$, H^+/CH_3OH
- (d) $[Ag(NH_3)_2]^+OH^-, CH_3MgBr, H^+/CH_3OH$
- 20. Benzaldehyde reacts with ethanoic KCN to give

 - (a) $C_6H_5CHOHCN$ (b) $C_6H_5CHOHCOC_6H_5$

 - (c) C₆H₅CHOHCOOH (d) C₆H₅CHOHCHOHC₆H₅
- 21. Which gives lactic acid on hydrolysis after reacting with HCN?
 - (a) HCHO
- (b) CH₃CHO
- (c) C₆H₅CHO (d) CH₃COCH₃
- 22. Reduction of C = O to $> CH_2$ can be carried out with
 - (a) catalytic reduction
 - (b) Na/C₂H₅OH
 - (c) Wolff-Kishner reduction
 - (d) LiAlH,
- 23. The end product B in the sequence of reactions

$$R - X \xrightarrow{CN^-} A \xrightarrow{NaOH} B$$
 is

- (a) an alkane
- (b) a carboxylic acid
- (c) sodium salt of carboxylic acid
- (d) a ketone

- Phenylmethyl ketone can be converted into ethylbenzene in one step by which of the following reagents?
 - (a) LiAlH₁
- (b) Zn-Hg/HCl
- (c) NaBH₁
- (d) CH₃MgI
- Conversion of acetaldehyde into ethyl acetate in presence of aluminium ethoxide is called
 - Ald ol condensation
- (b) Copereaction
- (c) Tischenko reaction
- (d) Benzoin condensation
- Match the columns

Column-II Column-I

- Etard reaction
- Alcoholic KOH
- Hydroxylation
- II. Anhydrous AlCl₃
- De hydrohal og en at ion
- III. Chromyl chloride
- Friedel-Craftsreaction
- IV. Dilute alkaline KMnO₄
- A-I; B-II; C-III; D-II
- (b) A-IV; B-III; C-I; D-II
- (c) A−III; B−IV; C−I; D−II
- (d) A−II; B−I; C−IV; D−III
- An organic compound A upon reacting with NH₃ gives B. On heating B gives C. C in presence of KOH reacts with Br 2 to given CH₃CH₂NH₂. A is:
 - (a) CH₃COOH
- (b) CH₂CH₂CH₂COOH
- CH₃-CH -COOH
- CH₃CH₂COOH
- CH_3
- 28. Which one of the following can be oxidised to the corresponding carbonyl compound?
 - (a) 2-hydroxypropane
 - (b) Ortho-nitrophenol
 - (c) Phenol
 - (d) 2-methyl-2 hydroxypropane
- 29. The reagent which can be used to distinguish acetophenone from benzophenone is
 - (a) 2,4 dinitrophenylhydrazine
 - (b) aqueous solution of NaHSO₃
 - (c) benedict reagent
 - (d) I₂and Na₂CO₃
- **30.** R-CH₂-CH₂OH can be converted into RCH₂CH₂COOH. The correct sequence of reagents is

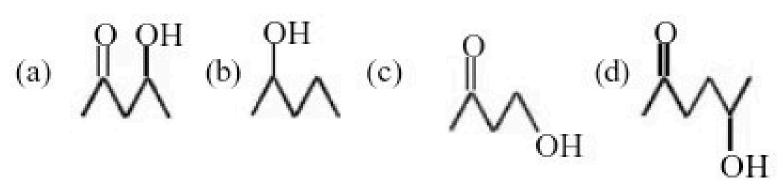
 - (a) PBr_3 , KCN, H_2

 - (c) KCN,H⁺ (d) HCN,PBr₃,H⁺
- Sodium salt of an organic acid 'X' produces effervescence with conc. H₂SO₄. 'X' reacts with the acidified aqueous CaCl₂ solution to give a white precipitate which decolourises acidic solution of KMnO₄. 'X' is:
 - (a) C₆H₅COONa (b) HCOONa
 - (c) CH₃COONa (d) Na₂C₂O₄

RESPONSE	17.@b©d		19.@b@d		21. (a) (b) (c) (d)
GRID	22.@b@d	23.abcd	24.@bcd	25.abcd	26. (a) b) c) d)
	27.@b@d	28.abcd	29. (a) (b) (c) (d)	30.@b©d	31. @b@d

CC26 c-104

In a set of the given reactions, acetic acid yielded a 39. IUPAC name of following will be product C.


$$CH_{3}COOH + PCl_{5} \longrightarrow A \xrightarrow{C_{6}H_{6}} B$$

$$Anh.AlCl_{3}$$

$$C_{2}H_{5}MgBr \longrightarrow C$$
Ether

Product C would be

- $CH_3-C(OH)C_6H_5$ (b) $CH_3CH(OH)C_2H_5$
- (c) CH₃COC₆H₅
- (d) CH₃CH(OH)C₆H₅
- Which one of the following will most readily be dehydrated in acidic condition?

- Which of the following contain an aldehyde?
 - (a) Vanilla beans
- (b) Meadow sweet
- Cinnamon
- (d) All of these
- Heating mixture of sodium benzoate and soda-lime gives
 - (a) benzene
- (b) methane
- sodium phenoxide
- (d) calcium benzoate
- Observe the following structures and pick up the correct statement.

$$C = O \qquad > C = OH$$

- Carbonyl carbon of I is more electrophilic than that of II
- Carbonyl carbon of I is less electrophilic than that of II
- Carbonyl carbon of both structures have equal electrophilic character
- It depends upon the complete structure of the compound
- 37. An enantiomerically pure acid is treated with a racemic mixture of an alcohol having one chiral carbon. The ester formed will be
 - Optically active mixture (b) Pure enantiomer
 - Meso compound
- (d) Racemic mixture
- *m*-Chlorobenzaldehyde on reaction with conc. KOH at room 38. temperature gives
 - (a) potassium *m*-chlorobenzoate and *m*-hydroxybenzaldehyde
 - *m*-hydroxybenzaldeh yde and *m*-chlorobenzyl alcohol
 - *m*-chlorobenzyl alcohol and *m*-hydroxybenzyl alcohol
 - potassium *m*-chlorobenzoate and *m*-chlorobenzylalcohol.

- (a) 4-formyl3-methyl 1-hydroxy benzene
- (b) 4-formyl 3-methyl phenol
- (c) 4-hydroxy 2-methyl benzaldehyde
- (d) 4-hydroxy 2-methyl carbaldehyde
- The correct order of increasing acid strength of the compounds
 - (A) CH₃CO₂H
- (B) MeOCH₂CO₂H
- CF₃CO₂H
- (a) $D \le A \le B \le C$
- (b) A < D < B < C
- (c) $B \le D \le A \le C$
- (d) $D \le A \le C \le B$
- The increasing order of the rate of HCN addition to compound A - D is
 - (A) HCHO
- (B) CH₃COCH₃
- (C) PhCOCH₃
- (D) PhCOPh
- D < C < B < A
- (b) C < D < B < A
- A < B < C < D

(d) $D \le B \le C \le A$

- The carboxyl functional group (-COOH) is present in
 - (a) picric acid
- (b) barbituric acid
- ascorbic acid
- (d) aspirin
- Which alkene on ozonolysis gives CH₃CH₂CHO and CH₃CCH₃

(a)
$$CH_3CH_2CH = C CH_3$$

 CH_3 (b) $CH_3CH_2CH = CHCH_2CH_3$

(c)
$$CH_3CH_2CH = CHCH_3$$
 (d) $CH_3 - C = CHCH_3$ CH_3

- 44. Which one of the following is reduced with zinc and hydrochloric acid to give the corresponding hydrocarbon?
 - (a) Acetamide
- (b) Acetic acid
- Ethyl acetate
- (d) Butan-2-one
- Acetal is produced by reacting an alcohol in the presence of dry HCl with
 - (a) acetaldehyde
- ketone
- ether (c)
- carboxylic acid

RESPONSE GRID

32.(a)(b)(c)(d) 37.(a)(b)(c)(d)

33.@b@d 38.(a)(b)(c)(d)

34.abcd 39.(a)(b)(c)(d)

35.(a)(b)(c)(d) 40.(a)(b)(c)(d)