Based on Latest

NCERT | NEET Syllabus &

NTA Guidelines

For NEET 2025

CHAPTERWISE - TOPICWISE

DAILY PRACTICE PAPERS

with Separate Solution Booklet

IN ELECTION OF THE STRY

CLASS XI & XII

Scoring Grid

Total Questions 45 Total Marks 180 Attempted Correct Incorrect Net Score Cut-off Score 45 Qualifying Score Success Gap = Net Score – Qualifying Score Net Score (Correct × 4) – (Incorrect × 1)

Contents

- 1. Some Basic Concepts of Chemistry
- 2. Structure of Atom
- 3. Classification of Elements and Periodicity in Properties
- 4. Chemical Bonding and Molecular Structure
- 5. Thermodynamics
- 6. Equilibrium
- 7. Redox Reactions
- 8. Organic Chemistry Some Basic Principles and Techniques
- 9. Hydrocarbons

Contents

- 1. Solutions
- 2. Electrochemistry
- 3. Chemical Kinetics.
- 4. The d-and f-Block Elements.
- 5. Coordination Compounds
- 6. Haloalkanes and Haloarenes
- 7. Alcohols, Phenols and Ethers
- 8. Aldehydes, Ketones and Carboxylic Acids
- 9. Amines
- 10. Biomolecules
- "B. Principles Related to Practical Chemistry

DPP - Daily Practice Problems

Chapter-wise Sheets

Date :	Start Time :	End Time :	
		2012/86/90/00/2017/80/10/20/00	

CHEMISTRY (CC04)

SYLLABUS: Chemical bonding and Molecular Structure

Max. Marks: 180 Marking Scheme: + 4 for correct & (-1) for incorrect Time: 60 min.

INSTRUCTIONS: This Daily Practice Problem Sheet contains 45 MCQ's. For each question only one option is correct. Darken the correct circle/ bubble in the Response Grid provided on each page.

- The electronic configuration of metal M is $1s^2 2s^2 2p^6 3s^1$. The formula of its oxide will be
 - (a) MO
- (b) M₂O
- (c) SO₃
- (d) All of these
- Which of the following does not contain coordinate bond?
 - (a) BH₄
- (b) NH₄⁺
- (c) CO_3^{2-}
- (d) H₃O⁺
- Which of the following statements is incorrect?
 - (a) The formation of ionic compounds depend upon the ease of formation of the positive and negative ions from the respective neutral atoms.
 - (b) Formation of ionic compounds depend upon arrangement of the positive and negative ions in the solid.
 - (c) Formation of positive ion involves addition of electron(s) while that of negative ion involves removal of electron(s).
 - (d) None of these

- Hybridisation of the underline atom changes in:
 - (a) AlH₃ changes to AlH₄
 - (b) H₂O changes to H₃O⁺
 - (c) NH3 changes to NH4+
 - (d) in all cases
- The decreasing values of bond angles from NH₃ (106°) to SbH₃ (101°) down group-15 of the periodic table is due to
 - (a) decreasing lp-bp repulsion
 - (b) decreasing electronegativity
 - (c) increasing bp-bp repulsion
 - (d) increasing p-orbital character in sp³
- In PO_4^{3-} , the formal charge on each oxygen atom and the P – O bond order respectively are
 - (a) -0.75, 0.6
- (b) -0.75, 1.0
- (c) -0.75, 1.25 (d) -3, 1.25
- KF combines with HF to form KHF2. The compound contains the species
 - (a) K^+ , F^- and H^+ (b) K^+ , F^- and HF
 - (c) K⁺, and [HF₂]⁻
- (b) $[KHF]^+$ and F_2

RESPONSE GRID

- 3. (a)(b)(c)

Space for Rough Work

(a) A - (iv, q); B - (ii, p); C - (i, r); D - (iii, s)

(b) A - (iv, q); B - (i, p); C - (ii, s); D - (iii, r)

(c) A - (i, p); B - (iii, s); C - (iv, r); D - (ii, q)

(d) A - (iv, p); B - (i, r); C - (iii, q); D - (ii, s)

combination of atomic orbitals?

nearly the same energy.

have same energy.

(a) $IF_7 < IF_5 < CIF_3 < XeF_2$

(b) $IF_7 < XeF_2 < ClF_2 < IF_5$

(c) $IF_7 < CIF_3 < XeF_2 < IF_5$

(d) $IF_7 < XeF_2 < IF_5 < ClF_3$

17. The dipole moment of chlorobenzene

The dipole moment of

(a) B > P = As = Bi

(c) B < P = As = Bi

2.86 D

1.5 D

orbital.

(i) and (ii)

(c) (i) only

15. Which of the following statements is/are not correct for

The combining atomic orbitals must have the same or

Greater the extent of overlap, the greater will be the

electron density between the nuclei of a moleculer

 $2p_x$, $2p_y$ or $2p_z$ orbital of other atom as these orbitals

(b) (iii) only

(d) (ii) and (iii)

(iii) 2p_z orbital of one atom can combine with either of

Which of the following is the correct increasing order of

lone pair of electrons on the central atom?

C-14 DPP/ CC04

- An ether is more volatile than an alcohol having the same molecular formula. This is due to
 - (a) dipolar character of ethers
 - (b) alcohols having resonance structures
 - inter-molecular hydrogen bonding in ethers
 - (d) inter-molecular hydrogen bonding in alcohols
- In which of the following ionization processes, the bond order has increased and the magnetic behaviour has changed?
 - (a) $N_2 \rightarrow N_2^+$ (b) $C_2 \rightarrow C_2^+$
 - (c) $NO \rightarrow NO^+$ (d) $O_2 \rightarrow O_2^+$.
- The maximum number of 90° angles between bond pair-bond pair of electrons is observed in
 - (a) dsp² hybridization
- (b) sp³d hybridization
- (c) dsp³ hybridization
- (d) sp³d² hybridization
- Two ice cubes are pressed over each other until they unite to form one block. Which one of the following forces dominate for holding them together?
 - Dipole-dipole interaction
 - (b) Van der waals' forces
 - Hydrogen bond formation
 - (d) Covalent attraction
- In XeF₂, XeF₄ and XeF₆, the number of lone pairs on Xe are respectively
 - (a) 2, 3, 1
- (b) 1,2,3
- (c) 4, 1, 2
- (d) 3, 2, 1
- The hybridization of atomic orbitals of nitrogen in NO_2^+ , NO_2^- and NH_4^+ are
 - (a) sp^2 , sp^3 and sp^2 respectively
 - (b) sp, sp² and sp³ respectively
 - (c) sp², sp and sp³ respectively
 - (d) sp^2 , sp^3 and sp respectively

(iv) 1, 3

14. Match Column-I with Column-II and Column-III and choose the correct option from the given codes.

Column-I Molecule	Column-II (No. of lone	Column-III (Shape of molecule)		
Morecure	pairs and bond pairs)	(Shape of molecule)		
(A) NH ₃	(i) 1, 2	(p) Bent		
(B) SO ₂	(ii) 1, 4	(q) Trigonal pyramidal		
(C) SF ₄	(iii) 2, 3	(r) T-shape		

(a) Cl₂O (c) PbCl₂

character?

(c)

- - 11. @ (b) © (d)

NCl₃

BaCl₂

- 10.@ (b) (c) (d)
- 12. (a) (b) (c) (d) 17.

| is 1.5 D.

is

2.25 D

(b) B>P>As>Bi

(d) $B \le P \le As \le Bi$

0 D

(d)

In compounds of type ECl_3 , where E = B, P, As or Bi, the

19. Which of the following substances has the greatest ionic

angles C1 - E- Cl for different E are in the order.

(D) ClF₃

18.(a)(b)(c)(d)

See-Saw

- 9. (a)(b)(c)(d)
- 14.(a)(b)(c)(d) 19.(a)(b)(c)(d)

DPP/ CC04

c-15

- 20. If an organic compound contain 92.3% C and 7.7% H, then number of sp³,sp² and sp hybridized carbon atoms in all possible structures of compound respectively are (molecular mass = 52 g/mol
 - (a) 1,2,5 (b) 0,4,4

 - (c) 0, 8, 4 (d) None of these
- 21. Which of the following are isoelectronic and isostructural? $NO_3^-, CO_3^{2-}, ClO_3^-, SO_3^-$
 - (a) NO_3^- , CO_3^{2-} (b) SO_3^- , NO_3^- (c) ClO_3^- , CO_3^{2-} (d) CO_3^{2-} , SO_3^-
- 22. Consider the chemical species NO_3^- , NO_2^+ and NO_2^- and point out the correct statement given below
 - (a) The hybrid state of N in NO₂⁺ is sp²
 - (b) The hybrid state of N in all the species is the same
 - The shape of both NO_2^+ and NO_2^- is bent while $NO_3^$ is planar
 - (d) The hybrid state of N in NO_3^- and NO_2^- is the same
- 23. Bond order normally gives idea of stability of a molecular species. All the molecules viz. H₂, Li₂ and B₂ have the same bond order yet they are not equally stable. Their stability order is

- (a) $H_2 > B_2 > Li_2$ (b) $Li_2 > H_2 > B_2$ (c) $Li_2 > B_2 > H_2$ (d) $H_2 > Li_2 > B_2$
- **24.** $_{1}H^{2} + _{1}H^{2} \longrightarrow _{2}He^{3} + _{0}n^{1}$

The above nuclear reaction is called

- (a) nuclear fission
- nuclear fusion
- artificial transmutation
- spontaneous disintegration
- Hydrogen chloride molecule contains
 - polar covalent bond (b)
 - (d) electrovalent bond

double bond

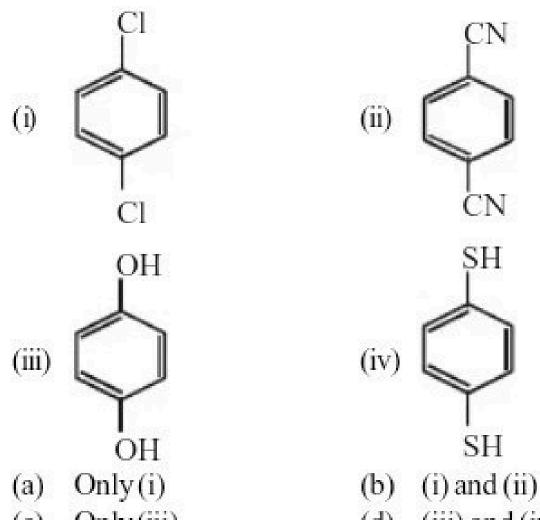
co-ordinate bond Among the following species, identify the isostructural pairs

$$NF_3, NO_3^-, BF_3, H_3O^+, HN_3$$

- $[NF_3, NO_3^-]$ and $[BF_3, H_3O^+]$
- $[NF_3, HN_3]$ and $[NO_3, BF_3]$
- $[NF_3, H_3O^+]$ and $[NO_3^-, BF_3]$
- $[NF_3, H_3O^+]$ and $[HN_3, BF_3]$

- 27. In the anion HCOO the two carbon oxygen bonds are found to be of equal length. What is the reason for it?
 - Electronic orbitals of carbon atom are hybridised
 - The C = O bond is weaker than the C O bond
 - The anion HCOO has two resonating structures
 - The anion is obtained by removal of a proton from the acid molecule
- Which of the following is/are not essential condition(s) for hybridisation?
 - The orbitals present in the valence shell of the atom are hybridised.
 - The orbitals undergoing hybridisation should have almost equal energy.
 - (iii) Promotion of electron is essential prior to hybridisation
 - (iv) Only half filled orbitals participate in hybridisation.
 - (i) only (a)
- (b) (iii) only
- (iv) only
- (d) (iii) and (iv)
- The molecule XY₂ contains two σ and two π bonds and one lone pair of electrons in valence shell of X. The arrangement of lone pair and bond pairs is
 - linear (a)
- (b) trigonal planar
- square pyramidal
- (d) unpredictable
- 30. The molecules BF3 and NF3 are both covalent compounds, but BF₃ is non polar whereas NF₃ is polar. The reason for this is
 - atomic size of boron is larger than nitrogen
 - Boron is metal while nitrogen is gas
 - B F bonds are non-polar while N F bonds are polar
 - BF₃ is planar but NF₃ is pyramidal
- Amongst LiCl, RbCl, BeCl, and MgCl, the compounds with the greatest and the least ionic character, respectively are:
 - LiCl and RbCl
- (b) RbCl and BeCl₂
- MgCl, and BeCl,
- (d) RbCland MgCl₂
- Which of the following is the wrong statement?
 - (a) ONCland ONO are not isoelectronic.
 - O₃ molecule is bent (b)
 - Ozone is violet-black in solid state
 - Ozone is paramagnetic gas.

RESPONSE GRID


- 20.(a)(b)(c)(d)
- 21.@\b(c)\d
- 22.@\b\C\d
- 23. (a) (b) (c) (d)
 - 28.(a)(b)(c)(d) 29. (a)(b)
- 24. (a) (b) (c) (d)

27. (a) (b) (c) (d) 26.abcd 25.@b@d 31.(a)(b)(c)(d) 32.(a)(b)(c)(d) 30.(a)(b)(c)(d)

DPP/ CC04 c-16

33. For which of the following molecule significant $\mu \neq 0$?

- Only (iii)
- (d) (iii) and (iv)
- The bond dissociation energy of B F in BF₃ is 646 kJ mol⁻¹ whereas that of C - F in \widehat{CF}_4 is 515 kJ mol⁻¹. The correct reason for higher B – F bond dissociation energy as compared to that of C - F is
 - stronger σ bond between B and F in BF₃ as compared to that between C and F in CF₄.
 - (b) significant $p\pi p\pi$ interaction between B and F in BF₃ whereas there is no possibility of such interaction between C and F in CF₄.
 - (c) lower degree of $p\pi p\pi$ interaction between B and F in BF₃ than that between C and F in CF₄.
 - (d) smaller size of B- atom as compared to that of C- atom.
- 35. Dipole-induced dipole interactions are present in which of the following pairs:
 - Cl₂ and CCl₄
- (b) HCl and He atoms
- SiF₄ and He atoms
- (d) H₂O and alcohol
- The number and type of bonds in C_2^{2-} ion in CaC_2 are:
 - One σ bond and one π -bond
 - One σ bond and two π -bond
 - Two σ bond and two π -bond
 - Two σ bond and one π -bond
- Which of the following methods is used for measuring bond length?
 - X-ray diffraction
 - Electron-diffraction
 - Spectroscopic techniques
 - All of these

Which of the following molecules have same bond order?

$$H_2$$
, Cl_2 , CO , Br_2 , N_2
 I II III IV V

Choose the correct option.

- I, II and IV have same bond order
- III and V have same bond order
- Both (a) and (b) are correct
- None of the above
- 39. Which of the following is/are misconception(s) associated with resonance?
 - The molecule exists for a certain fraction of time in one cannonical form and for other fractions of time in other cannonical forms.
 - The cannonical forms have no real existence.
 - There is no such equilibrium between the cannonical forms.
 - (i) only
- (b) (ii) and (iii)
- (c) (i) and (iii)
- (d) (iii) only.
- **40.** A neutral molecule XF₃ has a zero dipole moment. The element X is most likely
 - (a) chlorine (b) boron
 - (c) nitrogen (d) carbon
- The species having pyramidal shape is:
 - (a) SO₃
- (b) BrF₃
- SiO3
- (d) OSF₂
- Bond order of 1.5 is shown by:
 - (a) O_2^+
- (b) O₂
- O_2^{2-} (c)
- (d) O₂
- **43.** Which one of the following properties is **not** shown by NO?
 - (a) It is diamagnetic in gaseous state
 - It is neutral oxide
 - It combines with oxygen to form nitrogen dioxide
 - It's bond order is 2.5
- The charge/size ratio of a cation determines its polarizing power. Which one of the following sequences represents the increasing order of the polarizing power of the cationic species, K⁺, Ca²⁺, Mg²⁺, Be²⁺?
 - (a) $Ca^{2+} < Mg^{2+} < Be^{+} < K^{+}$
 - (b) $Mg^{2+} < Be^{2+} < K^+ < Ca^{2+}$
 - (c) $Be^{2+} < K^+ < Ca^{2+} < Mg^{2+}$
 - (d) $K^+ < Ca^{2+} < Mg^{2+} < Be^{2+}$.
- 45. In which of the following pairs of molecules/ions, both the species are not likely to exist?
 - (a) H_2^+, He_2^{2-}
 - - (b) H_2^-, He_2^{2-}
 - H_2^{2+}, He_2
- (d)
- H_2^-, He_2^{2+}

RESPONSE GRID

33.	(a)	(b)	(C)(d)	
38.	(a)	(b)	(C)(d)	1

35.(a)(b)(c)(d)

45.(a)(b)(c)(d)

36.(a)(b)(c)(d)

37. (a)(b)(c)(d)

Space for Rough Work